SlideShare a Scribd company logo
General Expansion of
     Binomials
General Expansion of
              Binomials
    Ck is the coefficient of x k in 1  x 
n                                          k
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                         k


                                          n
                                   n
                                     Ck   
                                          k 
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                            k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                            k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                            k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n

e.g .2  3 x 
              4
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                             k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n

e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x 
               4                                       2              3            4
General Expansion of
             Binomials
    Ck is the coefficient of x k in 1  x 
n                                             k


                                          n
                                   n
                                     Ck   
                                          k 

                  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
           which extends to;
           a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n

e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x 
               4                                       2              3            4



                 16  96 x  216 x 2  216 x 3  81x 4
Pascal’s Triangle Relationships
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
2 nCk  nCnk where 1  k  n  1
 " Pascal' s triangle is symmetrical"
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
2 nCk  nCnk where 1  k  n  1
 " Pascal' s triangle is symmetrical"

3 nC0  nCn  1
Pascal’s Triangle Relationships

1 nCk  n1Ck 1  n1Ck where 1  k  n  1

1  x n  1  x 1  x n1
           1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 


looking at coefficients of x k
LHS  nCk                  RHS  1 n1Ck 1   1 n1Ck 
                                   n1Ck 1  n1Ck       n Ck  n1Ck 1  n1Ck
2 nCk  nCnk where 1  k  n  1
 " Pascal' s triangle is symmetrical"                  Exercise 5B; 2ace, 5, 6ac,
                                                             10ac, 11, 14
3 nC0  nCn  1

More Related Content

Similar to 12X1 T08 02 general binomial expansions (2011)

12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)Nigel Simmons
 
On recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEKOn recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEK
edadk
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
Harshit Sharma
 
jalalam.ppt
jalalam.pptjalalam.ppt
jalalam.ppt
HamnaAnis1
 
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Edmundo José Huertas Cejudo
 
Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentationsandtouch
 
Summation Series
Summation SeriesSummation Series
Summation Series
MenglinLiu1
 
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
University of California, San Diego
 
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...grssieee
 

Similar to 12X1 T08 02 general binomial expansions (2011) (11)

Cepstral coefficients
Cepstral coefficientsCepstral coefficients
Cepstral coefficients
 
12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)
 
0702 ch 7 day 2
0702 ch 7 day 20702 ch 7 day 2
0702 ch 7 day 2
 
On recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEKOn recent improvements in the conic optimizer in MOSEK
On recent improvements in the conic optimizer in MOSEK
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
 
jalalam.ppt
jalalam.pptjalalam.ppt
jalalam.ppt
 
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
 
Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentation
 
Summation Series
Summation SeriesSummation Series
Summation Series
 
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
 
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Chapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdfChapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdf
Kartik Tiwari
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 

Recently uploaded (20)

"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Chapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdfChapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdf
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 

12X1 T08 02 general binomial expansions (2011)

  • 2. General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k
  • 3. General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k 
  • 4. General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n
  • 5. General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n
  • 6. General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n e.g .2  3 x  4
  • 7. General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x  4 2 3 4
  • 8. General Expansion of Binomials Ck is the coefficient of x k in 1  x  n k n n Ck    k  1  x n  nC0  nC1 x  nC2 x 2   nCn x n which extends to; a  b n  nC0 a n  nC1a n1b nC2 a n2b 2   nCn1ab n1  nCnb n e.g .2  3 x   4C0 2 4  4C1 23 3 x  4C2 2 2 3 x   4C3 23 x   4C4 3 x  4 2 3 4  16  96 x  216 x 2  216 x 3  81x 4
  • 10. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1
  • 11. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1
  • 12. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1 
  • 13. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k
  • 14. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk
  • 15. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk
  • 16. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck 
  • 17. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck
  • 18. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck
  • 19. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck 2 nCk  nCnk where 1  k  n  1 " Pascal' s triangle is symmetrical"
  • 20. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck 2 nCk  nCnk where 1  k  n  1 " Pascal' s triangle is symmetrical" 3 nC0  nCn  1
  • 21. Pascal’s Triangle Relationships 1 nCk  n1Ck 1  n1Ck where 1  k  n  1 1  x n  1  x 1  x n1  1  x  n1C0  n1C1 x   n1Ck 1 x k 1  n1Ck x k   n1Cn1 x n1  looking at coefficients of x k LHS  nCk RHS  1 n1Ck 1   1 n1Ck   n1Ck 1  n1Ck n Ck  n1Ck 1  n1Ck 2 nCk  nCnk where 1  k  n  1 " Pascal' s triangle is symmetrical" Exercise 5B; 2ace, 5, 6ac, 10ac, 11, 14 3 nC0  nCn  1